Find the angle θ (in radians) between the vectors. Help? u = 4i − j v = 20i − 5j

1 Answer
Jun 22, 2018

#theta~~ 1,107 " rad"#

Explanation:

The angle theta between two vectors #u# and #v# is given by the formula of the dot product:

#vecu*vecv=|u||v|costheta#

Where #|u|# and #|v|# are the absolute values/magnitudes.

If #vecu = x_uveci+y_uvecj# and #vecv=x_v veci+y_v vecj#, then

#vecu*vecv=(x_uveci+y_uvecj)(x_v veci+y_v vecj)#

By the dot product, #veci*veci=vecj*vecj=1# and #veci*vecj=0#.

#:. vecu*vecv=x_ux_v+y_uy_v#

Now, the magnitude of a vector #veca=xveci+yvecj# is

#|veca|=sqrt(x^2+y^2)#

Which is basically the lenght of the vector.

#vecu*vecv=|u||v|costheta=>costheta=(vecu*vecv)/(|u||v|)#

#color(blue)( :. costheta = (x_ux_v+y_uy_v)/(sqrt(x_u^2+y_u^2)sqrt(x_v^2+y_v^2))#

This formula gives us the angle between two vectors #u# and #v#.

#vecu=4veci-1vecj#
#vecv=20veci-5vecj#

#x_ux_v+y_uy_v=4*20+(-1)(-5)=80+5=85#
#|u|=sqrt(16+1)=sqrt17#
#|v|=sqrt(400+25)=5sqrt85#

#costheta=85/(5sqrt17sqrt85)=1/sqrt5#

Therefore,

#theta=arccos(1/sqrt5) ~~ 1,107 " rad"#