Find the antiderivative of ..?

#(6x^5-7x^3+12x)/(2x)#

1 Answer
Jan 25, 2018

#int(6x^5-7x^3+12x)/(2x)dx=(6x^5)/10-(7x^3)/6+6x+"C"#

Explanation:

Given: #int(6x^5-7x^3+12x)/(2x)dx#

Take out the constant #1/2#

#1/2*int(6x^5-7x^3+12x)/xdx#

We can separate each term and integrate each term individually so we can rewrite the integral as:

#1/2[int(6x^5)/xdx-int(7x^3)/xdx+int(12x)/xdx]#

But before we integrate, simplify!

#1/2[int6x^4dx-int7x^2dx+int12dx]#

Now we can integrate each term:

#int6x^4dx=>intcx^adx=(cx^(a+1))/(a+1)=>(6x^(4+1))/(4+1)=(6x^5)/5#

#-int7x^2dx=>intcx^adx=(cx^(a+1))/(a+1)=>(7x^(2+1))/(2+1)=-(7x^3)/3#

#int12dx=>intcdx=cx=>=12x#

Putting it all together we get

#=1/2[(6x^5)/5-(7x^3)/3+6x]#

#=(6x^5)/10-(7x^3)/6+6x+"C"larr# Don't Forget the Constant!