Find the area enclosed by #y^2-4x+4=0# and #x-y=4#?

1 Answer
May 17, 2018

#63/4~~21.333 units^2#

Explanation:

The reason why I am making #x# the subject of both equations is to make it easier for me to integrate a parabola ( #y^2-4x+4=0# ).

Equation 1: #y^2-4x+4=0#

Make #x# the subject,

#4x=y^2+4#

#x=y^2/4+1#

Equation 2: #x-y=4#

Make #x# the subject again,

#x=y+4#

#ulcolor(white)((xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx)#

Apply simultaneous equations,

#y^2/4+1=y+4#

Multiply both sides by #4#,

#y^2+4=4y+16#

Move all terms to one side,

#y^2-4y-12=0#

Factorise,

#(y-6)(y+2)=0#

Solve,

#y=6 or -2#

When #y=6#,

#x=10#

When #y=-2#

#x=2#

Hence, the intercepts of the equations are,

#(10,6) or (2,-2)#

#ulcolor(white)((xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx)#

To find the area enclosed, form an integral

#int_-2^6" "(y+4)-(y^2/4+1)" "dy#

Expand parenthesis and simplify,

#int_-2^6" "-y^2/4+y+3" "dy#

Integrate,

#[-y^3/12+y^2/2+3y]_-2^6#

Compute limits,

#[-(6)^3/12+(6)^2/2+3(6)]-[-(-2)^3/12+(-2)^2/2+3(-2)]#

Solve,

#63/4~~21.333 units^2#

For reference, here is a graph:

enter image source here