Dear friends, Please read our latest blog post for an important announcement about the website. ❤, The Socratic Team

Find the cubic equation whose roots are the cubes of the roots of #x^3+ax^2+bx+c=0#,#a,b,cinRR#?

Find the cubic equation whose roots are the cubes of the roots of
#x^3+ax^2+bx+c=0#,#a,b,cinRR#

Find the cubic equation whose roots are the cubes of the roots of
#x^3+ax^2+bx+c=0#,#a,b,cinRR#

1 Answer
Write your answer here...
Start with a one sentence answer
Then teach the underlying concepts
Don't copy without citing sources
preview
?

Answer

Write a one sentence answer...

Answer:

Explanation

Explain in detail...

Explanation:

I want someone to double check my answer

Describe your changes (optional) 200

10

This answer has been featured!

Featured answers represent the very best answers the Socratic community can create.

Learn more about featured answers

Mar 25, 2017

Answer:

#x^3+(a^3-3ab+3c)x^2+(b^3-3abc+3c^2)x+c^3=0#

Explanation:

Suppose the roots of the original cubic are #alpha#, #beta# and #gamma#.

Then:

#x^3+ax^2+bx+c = (x-alpha)(x-beta)(x-gamma)#

#color(white)(x^3+ax^2+bx+c) = x^3-(alpha+beta+gamma)x^2+(alphabeta+betagamma+gammaalpha)x-alphabetagamma#

So we have:

#{ (alpha+beta+gamma = -a), (alphabeta+betagamma+gammaalpha = b), (alphabetagamma = -c) :}#

The cubic we are looking for is:

#(x-alpha^3)(x-beta^3)(x-gamma^3)#

#= x^3-(alpha^3+beta^3+gamma^3)x^2+(alpha^3beta^3+beta^3gamma^3+gamma^3alpha^3)x-alpha^3beta^3gamma^3#

So the problem essentially boils down to expressing each of the symmetric polynomials in #alpha^3#, #beta^3# and #gamma^3# constituting these coefficients in terms of the elementary symmetric polynomials in #alpha#, #beta# and #gamma#.

For example:

#(alpha+beta+gamma)^3#

#=alpha^3+beta^3+gamma^3+3(alpha^2beta+beta^2gamma+gamma^2alpha+alphabeta^2+betagamma^2+gammaalpha^2)+6alphabetagamma#

#(alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)#

#=alpha^2beta+beta^2gamma+gamma^2alpha+alphabeta^2+betagamma^2+gammaalpha^2+3alphabetagamma#

So:

#alpha^3+beta^3+gamma^3#

#=(alpha+beta+gamma)^3-3(alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)+3alphabetagamma#

#=-a^3+3ab-3c#

We also find:

#(alphabeta+betagamma+gammaalpha)^3#

#= alpha^3beta^3+beta^3gamma^3+gamma^3alpha^3+3(alpha^3beta^2gamma+beta^3gamma^2alpha+gamma^3alpha^2beta+alpha^3betagamma^2+beta^3gammaalpha^2+gamma^3alphabeta^2)+6alpha^2beta^2gamma^2#

#(alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)alphabetagamma#

#=alpha^3beta^2gamma+beta^3gamma^2alpha+gamma^3alpha^2beta+alpha^3betagamma^2+beta^3gammaalpha^2+gamma^3alphabeta^2+3alpha^2beta^2gamma^2#

So:

#alpha^3beta^3+beta^3gamma^3+gamma^3alpha^3#

#=(alphabeta+betagamma+gammaalpha)^3-3(alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)alphabetagamma+3(alphabetagamma)^2#

#=b^3-3abc+3c^2#

Finally:

#alpha^3beta^3gamma^3 = (alphabetagamma)^3 = -c^3#

Hence the required cubic equation is:

#x^3+(a^3-3ab+3c)x^2+(b^3-3abc+3c^2)x+c^3 = 0#

#color(white)()#
Footnote

If you would like to see a more advanced application of symmetric polynomials, you may like to take a look at this one: https://socratic.org/s/aCWXbG2b

Was this helpful? Let the contributor know!
1500
Impact of this question
2886 views around the world
You can reuse this answer
Creative Commons License