Find the derivative of #y=3tan^-1(x+sqrt(1+x^2))#?

1 Answer
May 16, 2018

#(dy)/(dx)=3/(2(1+x^2)#

Explanation:

We know that.

#color(violet)((1)cos(pi/2-theta)=sintheta and sin(pi/2-theta)=costheta#

#color(blue)((2) (1+cosalpha)=2cos^2(alpha/2) and sinalpha=2sin(alpha/2)cos(alpha/2)#

#color(brown)((3)cot(pi/2-alpha)=tanalpha#

#color(red)((4)tan^-1(tan alpha)=alpha ,where, alpha in(-pi/2,pi/2)#

Here,

#y=3tan^-1(x+sqrt(1+x^2))#

Substitute, #x=tantheta=>theta=tan^-1x,where,thetain (- pi/2,pi/2)#

#:.y=3tan^-1(tantheta+sqrt(1+tan^2theta))#

#=3tan^-1(tantheta+sectheta)#

#=3tan^-1(sintheta/costheta+1/costheta)#

#=3tan^-1((1+sintheta)/costheta)..to Apply(1)#

#=3tan^-1((1+cos(pi/2-theta))/sin(pi/2-theta))...toApply(2)#
#=3tan^-1((2cos^2(pi/4-theta/2))/(2sin(pi/4-theta/2)cos(pi/4- theta/2)))#

#=3tan^-1(cos(pi/4-theta/2)/sin(pi/4-theta/2))#

#=3tan^-1(cot(pi/4-theta/2))#

#=3tan^-1(cot{pi/2-pi/4-theta/2})#

#=3tan^-1(cot(pi/2-(pi/4+theta/2))...toApply(3)#

#=3tan^-1(tan(pi/4+theta/2))..toApply(4)#

Now,

#theta in (-pi/2,pi/2)#

#=>theta/2 in(-pi/4,pi/4)...to #[Dividing by #2#]

#=>pi/4+theta/2 in (-pi/4+pi/4,pi/4+pi/4)...to#[Adding #pi/4#]

#=>pi/4+theta/2 in(0,pi/2)sub(-pi/2, pi/2)#

So,

#y=3(pi/4+theta/2)#

#y=(3pi)/4+3/2*theta,where, theta=tan^-1x#

#=>y=(3pi)/4+3/2tan^-1x#

#=>(dy)/(dx)=0+3/2(1/(1+x^2))#

#i.e. (dy)/(dx)=3/(2(1+x^2)#