Find the equation to the circle described on the common chord of the circles x^2+y^2-4x-2y-31=0 and 2x^2+2y^2-6x+8y-35=0 as diameter?

1 Answer
Mar 21, 2018

enter image source here
Equations of

#"Circle"_1->x^2+y^2-4x-2y-31=0.....[1]#

#"Circle"_2->2x^2+2y^2-6x+8y-35=0#

#=>"Circle"_2->x^2+y^2-3x+4y-35/2=0.....[2]#

Subtracting [1] from [2] we get the equation of common chord of the two given circles.
#x+6y+27/2=0......[3] #

Now equation of set of circles having common chord represented by equation [3] is given by

#"Circle"_1+lambda"Circle"_2=0#, where #lambda # is a parameter.

#=>x^2+y^2-4x-2y-31+lambda(x^2+y^2-3x+4y-35/2)=0#

#=>(1+lambda)x^2+(1+lambda)y^2-(4+3lambda)x-(2-4lambda)y-(31+35/2lambda)=0......[4]#

#=>x^2+y^2-(4+3lambda)/(1+lambda)x-(2-4lambda)/(1+lambda)y-(31+35/2lambda)/(1+lambda)=0#

Obviously the coordinates of the centers of the set of circles will be

given by #((4+3lambda)/(2(1+lambda)),(2-4lambda)/(2(1+lambda)))#

We are to find out the equation of that circle which will have the equation [3] as diameter, So the coordinates of the center should satisfy equation [3].

Hence

#(4+3lambda)/(2(1+lambda))+6xx(2-4lambda)/(2(1+lambda))+27/2=0 #

#=>4+3lambda+6xx(2-4lambda)+27/2xx2(1+lambda)=0 #

#=>4+3lambda+12-24lambda+27+27lambda=0 #

#=>43+6lambda=0 #

#=>lambda=-43/6#

Inserting the value of #lambda# in [4] we can get the required equation of the circle

#(1+lambda)x^2+(1+lambda)y^2-(4+3lambda)x-(2-4lambda)y-(31+35/2lambda)=0#

#=>(1-43/6)x^2+(1-43/6)y^2-(4+3(-43/6))x-(2-4(-43/6))y-(31+35/2(-43/6))=0#

#=>-37/6x^2-37/6y^2+35/2x-92/3y+1133/12=0#

#=>74x^2+74y^2-210x+368y-1133=0....[5]# #[color(orange)("Circle"_3)]#