Find the exact perimeter of this triangle?
Answer is: #6sqrt2# #+ 10# units
Answer is:
1 Answer
Jul 12, 2017
Explanation:
#"to find the value of x use "color(blue)"Pythagoras' theorem"#
#"that is"# the square on the hypotenuse of a right triangle is equal to the sum of squares on the other two sides.
#rArrx^2+(x+3)^2=(x+4)^2#
#"expand brackets using the FOIL method gives"#
#x^2+x^2+6x+9=x^2+8x+16#
#"collect terms on left side and equate to zero"#
#x^2-2x-7=0larra=1,b=-2,c=-7#
#"solve using the "color(blue)"quadratic formula"#
#x=(2+-sqrt(4+28))/2=(2+-sqrt32)/2#
#color(white)(x)=(2+4sqrt2)/2=1+2sqrt2larr" positive only"#
#"perimeter "= x+x+3+x+4=3x+7#
#color(white)(perimeter)=3(1+2sqrt2)+7#
#color(white)(perimeter)=3+6sqrt2+7#
#color(white)(perimeter)=6sqrt2+10larr" exact value"#