Find the general and principal value of log(-1+I)-log(-1-i)?

1 Answer
Jun 17, 2018

Using the laws of logarithms,

#log(-1+i)-(-1-i)=log((-1+i)/(-1-i))#

Amplify the complex number by its conjugate:

#(-1+i)/(-1-i) * color(red)((-1+i)/(-1+i))=(-1+i)^2/(1^2-i^2)=(1-2i-1)/(1+1)=-(2i)/2=-i#

#:. log((-1+i)/(-1-i)) = log(-i)#

The base of the logarithm hasn't been stated as of yet, but I assume it is the natural logarithm. From now onwards, I will use #ln# to denote it.

We want to find:

#ln(-i)#

We know that the Polar form of a complex number is

#z=r(costheta+isintheta)=re^(itheta)#

#=> lnz = lnr+itheta#

Let #z=-i#.

#ln(-i) = lnr+itheta=ln|-i|+itheta=itheta#

Returning back to our trigonometric form:

#-i = costheta+isintheta#

#color(red)0color(blue)(-1)i =color(red)costheta+icolor(blue)sintheta#

#=> {(costheta=0),(sintheta=-1) :}#

The principal value of #theta# is the smallest positive one, hence:

#theta = (3pi)/2#

is the principal value.

As such, the general value of #theta# is:

#theta=(3pi)/2 +2kpi#, #kin ZZ#.

Therefore:

#ln(-i) = ln(-1+i)-ln(-1-i) = itheta=i((3pi)/2+2kpi)#

#"Principal value: " ln(-1+i)-ln(-1-i)=i(3pi)/2#

#"General value: " ln(-1+i)-ln(-1-i) =i((3pi)/2+2kpi)#