# y^2/xdy/dx=lnx#.
#:. y^2dy=xlnxdx..............."[separable variable]"#.
#:." Integrating, "inty^2dy=intxlnxdx+c#.
#:. y^3/3=intxlnxdx+c...................(ast)#.
To find #intxlnxdx#, we use the Rule of Integration by Parts (IBP) :
IBP : #intuv'dx=uv-intu'vdx#.
We take, #u=lnx, v'=x. :. u'=1/x, v=intv'dx=x^2/2#.
#:. intxlnxdx=(lnx)(x^2/2)-int{(1/x)(x^2/2)}dx#,
#=x^2/2lnx-1/2intxdx#,
#:. intxlnxdx=x^2/2lnx-x^2/4#.
Utilising this in #(ast)#, we get the general solution :
#y^3/3=x^2/2lnx-x^2/4+c#.
# :. 4y^3=3x^2(2lnx-1)+k, or, #
# 4y^3=3x^2*ln(x^2/e)+k, "where, "k=12c.#