Find the length of the curve #y=ln(e^(x)-1/e^(x)+1)# from #x=1# to #x=2#?

1 Answer
Apr 14, 2018

#L ~~ 0.432333...#

Explanation:

Given: #y=ln(e^x-1/e^x+1)#

Rewrite as:

#y=ln(e^x-e^-x+1)#

Use the chain rule, #(dy(g))/dx = dy/(dg)(dg)/dx#, to compute the derivative:

We observe that #y = ln(g) and g = e^x-e^-x+1#, then #dy/(dg) = 1/g = 1/(e^x-e^-x+1)# and #(dg)/dx = e^x+e^-x#

Substituting into the chain rule:

#dy/dx = (e^x+e^-x)/(e^x-e^-x+1)#

Multiply the right side by 1 in the form of #e^x/e^x#:

#dy/dx = (e^(2x)+1)/(e^(2x)+e^x-1)#

The curve length is:

#L = int_a^b sqrt(1- (dy/dx)^2)dx#

Substitute the derivative and the limits:

#L = int_1^2 sqrt(1- ((e^(2x)+1)/(e^(2x)+e^x-1))^2)dx#

The indefinite integral cannot be resolved using standard functions, therefore, I used WolframAlpha to perform a numeric integration:

#L = int_1^2 sqrt(1- ((e^(2x)+1)/(e^(2x)+e^x-1))^2)dx ~~ 0.432333...#