Find the maxima and minima of function:- #y=2x^3-9x^2-24x+15#?
1 Answer
May 4, 2018
Minima:
Maxima:
Explanation:
Let us determine the coordinates of the maxima and minima,
When
#dy/dx=0# ,
#6x^2-18x-24=0#
#x^2-3x-4=0# Factor and solve,
#(x-4)(x+1)=0#
#x=4 or -1# When
#x=4# ,
#y=2(4)^3-9(4)^2-24(4)+15#
#color(white)(y)=-97#
#(4,-97)# When
#x=-1#
#y=2(-1)^3-9(-1)^2-24(-1)+15#
#color(white)(y)=28#
#(-1,28)#
Now, to determine the nature of these coordinates,
Find
#(d^2y)/dx^2# ,
#(d^2y)/dx^2=12x-18# When
#x=4# ,
#(d^2y)/dx^2=12(4)-18#
#color(white)((d^2y)/dx^2)=30>0# ( minima )When
#x=-1# ,
#(d^2y)/dx^2=12(-1)-18#
#color(white)((d^2y)/dx^2)=-30<0# ( maxima )
Therefore,
Check:
graph{2x^3-9x^2-24x+15 [-20, 20, -120,120]}