Find the minimum value of #f(x)=(x^2+1/x)/(x^2-(1-1/x^2)/(1/x+1/x^2)# over the interval #1lexle2#. Write your answer as an exact decimal?
1 Answer
Dec 17, 2017
Explanation:
#f(x) = (x^2+1/x)/(x^2-(1-1/x^2)/(1/x+1/x^2))#
#color(white)(f(x)) = (x^2+1/x)/(x^2-(x^2-1)/(x+1)#
#color(white)(f(x)) = (x^2+1/x)/(x^2-(x-1))#
#color(white)(f(x)) = (x^2+1/x)/(x^2-x+1)#
#color(white)(f(x)) = (x^3+1)/(x(x^2-x+1))#
#color(white)(f(x)) = ((x+1)(x^2-x+1))/(x(x^2-x+1))#
#color(white)(f(x)) = (x+1)/x#
#color(white)(f(x)) = 1+1/x#
This function is monotonically decreasing over the interval
So the minimum value occurs when