#y#=#x^(1/3)
(x-4)#
Points of inflection are the points where there is a change in curvature of the function.
This happens when the curvature is zero.
given:
y=#x^(1/3)
(x-4)#
Cubing both sides
#y^3#=#x(x-4)^3#
Differentiating wrt x
#3y^2y'#=#x(3(x-4)^2)+(x-4)^3#
=#(x-4)^2(3x+x-4)#
=#(x-4)^2(4x-4)#
=#(x-4)^2 4(x-1)#
Thus,
#3y^2y'#=#4(x-1)(x-4)^2#
Differentiating again wrt x
#3(y^2y''+y'(2y))#=#4((x-1)2(x-4)+(x-4)^2)#
=#4(x-4)(2(x-1)+(x-4))#
=#4(x-4)(2x-2+x-4)#
=#4(x-4)(3x-6)#
=#4(x-4)3(x-2)#
=#12(x-4)(x-2)#
#3(y^2y''+y'(2y))#=#12(x-4)(x-2)#
Dividing by 3 on both sides
#y^2y''+2yy'#=#4(x-4)(x-2)#
#y''=0#implies
#2yy'#=#4(x-2)(x-4)#
#yy'#=#2(x-4)(x-2)#
Rewriting the equation obtained after first differentiation
#3y^2y'#=#4(x-1)(x-4)^2#
Rearranging,
#3y.yy'#=#4(x-1)(x-4)^2#
Substituting for #yy'#
#3y(2(x-4)(x-2))#=#4(x-1)(x-4)^2#
Implies
#6y(x-4)(x-2)#=#4(x-1)(x-4)^2#
Simplifying,
#y(x-2)#=#4(x-1)(x-4)#
#y#=#4(((x-1)(x-4))/(x-2))#
Substituting for y
#x^(1/3)
(x-4)#=#4(((x-1)(x-4))/(x-2))#
Further,
#x^(1/3)
#=#4((x-1)/(x-2))#
Cubing both sides,
#x#=#64(x-1)^3 /(x-2)^3#
Cross multiplying
#x(x-2)^3#=#64(x-1)^3#
Expanding the polynomials
#x(x^3-3*2x^2+3.2^2*x-2^3)#=#64(x^3-3x^2+3x-1)#
#x^4-6x^3+12x^2-8x#=#64x^3-192x^2+192x-64#
Transposing the terms on R.H.S. to L.H.S
#x^4-6x^3+12x^2-8x-(64x^3-192x^2+192x-64)#=#0#
#x^4-6x^3+12x^2-8x-64x^3+192x^2-192x+64#=#0#
The root is investigated by trial and error and found to be x=0.712 correct to three decimal places
Substituting x = 0.712, y will be
#y#=#x^(1/3)
(x-4)#
=#0.712^(1/3) (0.712-4)#
=#-2.396#
Hence, #(x,y)=(0.712,-2.396)#happens to be the point of inflection