Find the sum to n terms of the series 2+3.3+4.3^2+5.3^3+.....?

1 Answer
Sep 14, 2017

See below.

Explanation:

#sum_(k=0)^n(k+2)x^k = xsum_(k=0)^nkx^(k-1)+2sum_(k=0)^n x^k#

but

#sum_(k=0)^n x^k = (x^(n+1)-1)/(x-1)#

and

#sum_(k=0)^n k x^(k-1) = d/(dx) sum_(k=0)^n x^k = (1 + (n (x-1)-1) x^n)/(x-1)^2# then

#sum_(k=0)^n(k+2)x^k = x( (1 + (n (x-1)-1) x^n)/(x-1)^2)+ 2( (x^(n+1)-1)/(x-1))#

now making #x = 3# we have

#sum_(k=0)^n(k+2)3^k=1/4 (3^(n+1) (3 + 2 n)-1)#