For #f(m)=3m^2-5#, how do you find f(4),f(-3),f(6)?

1 Answer
Jul 8, 2015

#f(4) = 43#
#f(-3) = 22#
#f(6) = 102#

Explanation:

Given #f(color(red)(m))=3color(red)(m)^2-5#

To evaluate #f(color(red)()4)# rewrite the given equation replacing each #color(red)(m)# with #color(red)(4)# and perform the arithmetic.
#color(white)("XXXX")##f(color(red)(4)) = 3(color(red)(4))^2 -5#
#color(white)("XXXX")##color(white)("XXXX")##=3(16)-5#
#color(white)("XXXX")##color(white)("XXXX")##= 43#

Similarly for #f(color(red)(-3))#
#color(white)("XXXX")##f(color(red)(-3)) = 3(color(red)(-3))^2-5#
#color(white)("XXXX")##color(white)("XXXX")##=3(9)-5#
#color(white)("XXXX")##color(white)("XXXX")##= 22#

and for #f(6)#
#color(white)("XXXX")##f(color(red)(6)) = 3(color(red)(6))^2-5#
#color(white)("XXXX")##color(white)("XXXX")##=3(36)-6#
#color(white)("XXXX")##color(white)("XXXX")##= 102#