For #f(x) =4x^3+12x^2+9x+7#, what is the equation of the line tangent to #x =-3/2#?
1 Answer
Aug 24, 2017
Explanation:
#•color(white)(x)m_(color(red)"tangent")=f'(x)" at "x=-3/2#
#f'(x)=12x^2+24x+9#
#rArrf'(-3/2)=12(-3/2)^2+24(-3/2)+9=0#
#rArr"tangent is parallel to the x-axis"#
#f(-3/2)=4(-3/2)^3+12(-3/2)^2+9(-3/2)+7#
#color(white)(f(-3/2))=7#
#rArr"equation of tangent is "y=7#
graph{(y-4x^3-12x^2-9x-7)(y-0.001x-7)=0 [-20, 20, -10, 10]}