For #f(x)=x^2sinx^3# what is the equation of the tangent line at #x=pi#?

1 Answer
Oct 30, 2015

In slope-intercept form it is #y = (2pisinpi^3 + 3xpi^4cospi^2)x-2pi^2sinpi^3 + 3xpi^5cospi^2 + pi^2 sinpi^3#

Explanation:

#f(x) = x^2sinx^3#

The point where #x=pi# has #y# coordinate: #f(pi) = pi^2 sinpi^3#

To find the slope of the tangent line, we'll need the derivative:
#f'(x) = 2xsinx^3+x^2(cosx^3)3x^2#

# = 2xsinx^3 + 3x^4cosx^2#

At the point where #x=pi#, the slope of the tangent line is:
#m=f'(pi) = 2pisinpi^3 + 3xpi^4cospi^2#

The equation of the line through the point #(pi, pi^2 sinpi^3)# with slope #m=2pisinpi^3 + 3xpi^4cospi^2# is

#y- pi^2 sinpi^3 = (2pisinpi^3 + 3xpi^4cospi^2)(x-pi)#

If you prefer slope-intercept form it is:

#y = (2pisinpi^3 + 3xpi^4cospi^2)x-2pi^2sinpi^3 + 3xpi^5cospi^2 + pi^2 sinpi^3#