For #n > 1#, I have designated the value of #log_n(pi+1/log_n(pi+1/log_n(pi+...)))# as the function #pin(n)#. Inversely, given #pin (8)=0.72544666#, how do you approximate # pi#?
1 Answer
Aug 3, 2016
#pi = 8^(0.72544666)-1/(0.72544666) ~~ 3.1415928#
Explanation:
Suppose:
#t = log_n(pi+1/(log_n(pi+1/(log_n(pi+...)))))=log_n(pi+1/t)#
Then:
#n^t = pi+1/t#
So:
#pi = n^t-1/t#
In our example, we are told that
So:
#pi = 8^(0.72544666)-1/(0.72544666)#
#~~ 4.5200539-1.3784611 = 3.1415928#