#"substitute "y=mx+4" into the equation of the circle"#
#rArrx^2+(mx+4)^2=4larr" expand and simplify"#
#rArrx^2+m^2x^2+8mx+16-4=0#
#rArr(1+m^2)x^2+8mx+12=0#
#"with "a=1+m^2,b=8m,c=12#
#"utilise the coditions for the "color(blue)"discriminant"#
#Delta=b^2-4ac#
#• " if "Delta>0" then 2 real solutions"to(b)" above"#
#• " if "Delta=0" then 1 real solution "to(a)" above"#
#• " if "Delta<0" then no real solutions "to(c)" above"#
#Delta=b^2-4ac=64m^2-48(1+m^2)#
#color(white)(xxxxxxxx)=16m^2-48#
#(a)#
#"solve "16m^2-48=0#
#rArr16(m^2-3)=0#
#rArrm^2-3=0rArrm^2=3rArrm=+-sqrt3#
#"there are 2 possible tangents to the circle"#
#y=-sqrt3x+4" or "y=sqrt3x+4#
#(b)" and "(c)#
#"we require to solve "#
#m^2-3>0" and "m^2-3<0#
#"graphing "m^2-3" will provide both solutions"#
#"zeros are "m=+-sqrt3#
#"coefficient of "m^2>0rArruuu#
graph{x^2-3 [-10, 10, -5, 5]}
#"solutions to "m^2-3>0" lie above the m(x)-axis"#
#rArrm<-sqrt3" or "m>sqrt3#
#"in interval notation "(-oo,-sqrt3)uu(sqrt3,+oo)#
#"solutions to "m^2-3<0" lie below the m(x)-axis"#
#rArr-sqrt3< m < sqrt3" or "(-sqrt3,sqrt3)#