For the dissociation reaction #N_2O_4(g)rightleftharpoons2NO_2(g)#, the degree of dissociation #(alpha)# in terms of #K_p# and equilibrium total pressure P is?
1 Answer
Assuming no
#alpha = sqrt(K_p/(K_p + 4P))#
For example, if
That makes sense because
For this reaction, assuming no
#"N"_2"O"_4(g) " "rightleftharpoons" " 2"NO"_2(g)# ,
#"I"" "P_(N_2O_4,i)" "" "" "" "0#
#"C"" "-x" "" "" "" "+2x#
#"E"" "P_(N_2O_4,i)-x" "" "2x# where
#P_(N_2O_4,i)# indicates the initial partial pressure of#"N"_2"O"_4(g)# .#x# is the extent of reaction.
This can be rewritten in terms of the fraction of dissociation
Thus, instead of
#P_(N_2O_4,i) - x = (1 - alpha)P_(N_2O_4,i)#
Similarly,
#2x = 2alphaP_(N_2O_4,i)#
The equilibrium mass action expression can then be written in terms of partial pressures:
#K_p = P_(NO_2)^2/(P_(N_2O_4))#
#= (2alphaP_(N_2O_4,i))^2/((1 - alpha)P_(N_2O_4,i))#
#= ((4alpha^2)/(1 - alpha)) P_(N_2O_4,i)#
Now, the partial pressure adds up to give the total pressure.
#P_(N_2O_4,eq) + P_(NO_2,eq) = P#
#= (1 - alpha)P_(N_2O_4,i) + 2alphaP_(N_2O_4,i)#
#= (1 + alpha)P_(N_2O_4,i)#
So,
#P_(N_2O_4,i) = P/(1+alpha)#
and we proceed to get:
#K_p = ((4alpha^2)/(1 - alpha)) P/(1 + alpha)#
#= ((4alpha^2)/(1 - alpha^2))P#
Now we are asked to solve for
#K_p(1 - alpha^2) = 4alpha^2P#
#K_p - K_palpha^2 = 4alpha^2P#
Rearrange to solve for
#K_p = K_palpha^2 + 4Palpha^2#
#= (K_p + 4P)alpha^2#
Therefore, knowing that
#color(blue)(alpha = sqrt(K_p/(K_p + 4P)))#