From the Heisenberg uncertainty principle, how do you calculate Δx for an electron with Δv = 0.300 m/s?
1 Answer
A formulation of the Heisenberg Uncertainty Principle is (Physical Chemistry: A Molecular Approach, McQuarrie):
#\mathbf(DeltavecxDeltavecp_x >= h)# where:
#Deltavecx# is the uncertainty in the position.#Deltavecp_x# is the uncertainty in the momentum.#h = 6.626xx10^(-34) "J"cdot"s"# is Planck's constant.
Recall from physics that momentum is defined as
Since
Solving for
#color(blue)(Deltavecx) = h/(Deltavecp_x)#
#= color(blue)(h/(m_eDeltavecv_x))#
#= (6.626xx10^(-34) "J"cdot"s")/((9.109xx10^(-31) "kg")("0.300 m/s"))#
#= (6.626xx10^(-34) "kg"cdot"m"^2"/s"^cancel(2)cdotcancel("s"))/((9.109xx10^(-31) "kg")("0.300 m/s"))#
#= (6.626xx10^(-34) cancel("kg")cdot"m"^cancel(2)"/"cancel("s"))/((9.109xx10^(-31) cancel("kg"))("0.300" cancel("m/s")))#
#=# #color(blue)("0.00242 m"#
And indeed, the Heisenberg Uncertainty Principle is satisfied:
#DeltavecxDeltavecp_x stackrel(?)(>=) h#
#= stackrel(Deltavecx)overbrace(("0.00242 m"))stackrel(Deltavecp_x)overbrace([(9.109*10^(-31) "kg")("0.300 m/s")])#
#= 6.61 xx 10^(-34) "J"cdot"s" > h# #color(green)(sqrt"")#