Given #A=((-1, 2), (3, 4))# and #B=((-4, 3), (5, -2))#, how do you find AB?

1 Answer
Sep 26, 2016

#"AXB" = ((14, -7), (8, 1))#

Explanation:

Check first whether the matrices are compatible?

#color(blue)(2)"X"color(red)(2) and color(red)(2)"X"color(blue)(2)#

are compatible (the middle numbers in red are the same)
and will give a #color(blue)(2X2)# matrix

The elements in each ROW in A must be multiplied by the elements of the COLUMNS of B, then find the sum each time.

#A=((-1, 2), (3, 4))# and #B=((-4, 3), ( 5, -2))#

The separate calculations give:

#color(white)(xx)4color(white)(xxx)-3color(white)(xxx)-12color(white)(xxx.x)9#
#color(white)(x)ul10color(white)(xxxx)ul(-4)color(white)(xxxxx)ul20color(white)(xxx)ul(-8)#
#color(white)(x)14color(white)(x.xx)-7color(white)(xxx.xx)8color(white)(xxx.x)1#

#"AXB" = ((14, -7), (8, 1))#