Given cos2x=(-5/12) and pi/2 < x < pi, how do you find the values of the six trig functions?

1 Answer
Jul 31, 2016

See explanation for the list.

Explanation:

#x in Q2 and,# as #cos 2x=-5/12<0, 2x in Q3#.

In Q2, sine and its reciprocal cosecant (csc) are positive. Others are,

negative. So, given #cos 2x=-5/12#,

#sin x=sqrt((1-cos 2x)/2)=sqrt(17/24)#

#csc x=1 /sin x=sqrt(24/17)#

#cos x =-sqrt((1+cos 2x)/2)=-sqrt(7/24)#

#sec x = 1/cos x=-sqrt(24/7)#

#tan x=sin x/(cos x)=--sqrt(17/7)#

#cot x=1/(tan x)=-sqrt(7/17)#

In Q3, tangent and its reciprocal cotangent are positive. Others are

negative.

So, given #cos 2x=-5/12#,

# sec 2x =1/(cos 2x) =-12/5.#

#sin 2x= -sqrt(1-cos^2 2x)=-sqrt(1-25/144)=-sqrt119/12#

#csc 2x=1/(sin 2x)=-12/sqrt119#

#tan 2x=(sin 2x) /(cos 2x)=sqrt119/5#

#cot 2x=1/(tan 2x)=5/sqrt119#

.