Given # f ( x ) = 16- x ^ { 2} # and # ( f - g ) ( x ) = - x ^ { 2} + x +12#, what is the function #g#?

1 Answer
Oct 31, 2017

See a solution process below:

Explanation:

First,

#(f - g)(x) = f(x) - g(x) = (16 - x^2) - g(x)#

We can now write this equation and solve for #g(x)#:

#-x^2 + x + 12 = (16 - x^2) - g(x)#

First, add #color(red)(g(x))# to each wide of the equation:

#color(red)(g(x)) - x^2 + x + 12 = (16 - x^2) - g(x) + color(red)(g(x))#

#g(x) - x^2 + x + 12 = (16 - x^2) - 0#

#g(x) - x^2 + x + 12 = 16 - x^2#

Now add #color(red)(x^2)# and subtract #color(blue)(x)# and #color(green)(12)# from each side of the equation to solve for #g(x)# while keeping the equation balanced:

#g(x) - x^2 + color(red)(x^2) + x - color(blue)(x) + 12 - color(green)(12) = 16 - color(green)(12) - x^2 + color(red)(x^2) - color(blue)(x)#

#g(x) - 0 + 0 + 0 = 4 - 0 - x#

#g(x) = 4 - x#