Given polynomial #f(x)=x^3-2x^2-40x-64# and a factor #x-8# how do you find all other factors?

1 Answer
Feb 23, 2017

The other factors are #(x+2)# and #(x+4)#

Explanation:

We perform a synthetic division

#color(white)(aaaa)##8##color(white)(aaaa)##|##color(white)(aaaa)##1##color(white)(aaaa)##-2##color(white)(aaaaa)##-40##color(white)(aaaaaa)##-64#

#color(white)(aaaaaa)##color(white)(aaaa)##|##color(white)(aaa)##color(white)(aaaaaaa)##8##color(white)(aaaaaa)##48##color(white)(aaaaaaaa)##64#

#color(white)(aaaaaaaaaa)#------------------------------------------------------------

#color(white)(aaaa)##color(white)(aaaaaa)##color(white)(aaaaaa)##1##color(white)(aaaaa)##6##color(white)(aaaaaaa)##8##color(white)(aaaaaaaa)##color(red)(0)#

The remainder is #=0#

The quotient is #=x^2+6x+8#

This is factorised as

#x^2+6x+8=(x+2)(x+4)#