Given polynomial #f(x)=x^3+2x^2-51x+108# and a factor #x+9# how do you find all other factors?

1 Answer
Dec 31, 2016

The answer is #=(x+9)(x-4)(x-3)#

Explanation:

#f(x)=x^3+2x^2-51x+108#

#(x+9)# is a factor

We do a long division

#color(white)(aaaa)##x^3+2x^2-51x+108##color(white)(aaaa)##∣##x+9#

#color(white)(aaaa)##x^3+9x^2##color(white)(aaaaaaaaaaaaaaa)##∣##x^2-7x+12#

#color(white)(aaaa)##0-7x^2-51x#

#color(white)(aaaaaa)##-7x^2-63x#

#color(white)(aaaaaaaa)##-0+12x+108#

#color(white)(aaaaaaaaaaaa)##+12x+108#

#color(white)(aaaaaaaaaaaaaa)##+0+0#

Therefore,

#(x^3+2x^2-51x+108)/(x+9)=x^2-7x+12#

We can factorise the quotient

#x^2-7x+12=(x-4)(x-3)#