Given that #arccos(x/a) + arccos(y/b)=alpha#. Then prove that?

#(x^2)/(a^2) - (2xycosalpha)/(ab) + (y^2)/(b^2) = sin^2 alpha#

1 Answer
May 28, 2018

Please refer to a Proof in Explanation.

Explanation:

Suppose that, #arccos(x/a)=theta and arccos(y/b)=phi#.

#:. costheta=x/a and cosphi=y/b...........(ast)#.

#:. sintheta=sqrt(1-x^2/a^2) and sinphi=sqrt(1-y^2/b^2)...(ast^1)#.

We are given that, #theta+phi=alpha#.

#:. sinalpha=sin(theta+phi)#,

#=sinthetacosphi+costhetasinphi#,

#rArr sinalpha=sqrt(1-x^2/a^2)*y/b+x/a*sqrt(1-y^2/b^2)#.

#:. sin^2alpha=(1-x^2/a^2)y^2/b^2+x^2/a^2(1-y^2/b^2)#

#+(2xy)/(ab)*sqrt(1-x^2/a^2)*sqrt(1-y^2/b^2)#,

#={y^2/b^2-(x^2y^2)/(a^2b^2)}+{x^2/a^2-(x^2y^2)/(a^2b^2)}#

#+(2xy)/(ab)*sqrt(1-x^2/a^2)*sqrt(1-y^2/b^2)#,

#=x^2/a^2+y^2/b^2-(2x^2y^2)/(a^2b^2)+(2xy)/(ab)*sqrt(1-x^2/a^2)*sqrt(1-y^2/b^2)#,

#=x^2/a^2+y^2/b^2-(2xy)/(ab){(xy)/(ab)-sqrt(1-x^2/a^2)*sqrt(1-y^2/b^2)}#,

#=x^2/a^2+y^2/b^2-(2xy)/(ab){costhetacosphi-sinthetasinphi}...[because, (ast) and (ast^1)]#,

#=x^2/a^2+y^2/b^2-(2xy)/(ab)cos(theta+phi)#.

# rArr sin^2alpha=x^2/a^2+y^2/b^2-(2xy)/(ab)cos(alpha)#, as desired!

Enjoy Maths.!