Given that #f(x) = sqrtx - 3# and g(x) = 2x + 1, how do you find #(f/g)(-sqrt3)#?

1 Answer
Oct 2, 2017

See a solution process below:

Explanation:

First, we can write #(f/g)(x)# as:

#(f/g)(x) = (sqrt(x) - 3)/(2x + 1)#

To find #(f/g)(-sqrt(3))# we need to substitute #color(red)(-3)# for each occurrence of #color(red)(x)# in #(f/g)(x)#:

#(f/g)(color(red)(x)) = (sqrt(color(red)(x)) - 3)/(2color(red)(x) + 1)# becomes:

#(f/g)(color(red)(-sqrt(3))) = (sqrt(color(red)(-sqrt(3))) - 3)/((2 * color(red)(-sqrt(3))) + 1)#

#(f/g)(color(red)(-sqrt(3))) = (sqrt(color(red)(-sqrt(3))) - 3)/((-2color(red)(sqrt(3)) + 1)#