Given that #f(x)= x^3-2x^2-3x +4# solve for the even and odd parts of #f(x)#?
1 Answer
#{ (f_e(x) = -2x^2+4 " is an even function"), (f_o(x) = x^3-3x " is an odd function") :}#
Explanation:
Given any function
Putting:
#{ (f_e(x) = 1/2(f(x)+f(-x))), (f_o(x) = 1/2(f(x)-f(-x))) :}#
we find:
#f_e(-x) = 1/2(f(-x)+f(x)) = 1/2(f(x)+f(-x)) = f_e(x)#
#f_o(-x) = 1/2(f(-x)-f(x)) = -1/2(f(x)-f(-x)) = -f_o(x)#
#f_e(x) + f_o(x) = 1/2(f(x)+color(red)(cancel(color(black)(f(-x))))) + 1/2(f(x)-color(red)(cancel(color(black)(f(-x))))) = f(x)#
If the original
Note that any constant term is of
So in our example, given:
#f(x) = x^3-2x^2-3x+4#
we find:
#{ (f_e(x) = -2x^2+4), (f_o(x) = x^3-3x) :}#
Here are
graph{(y-(x^3-3x))(y-(-2x^2+4)) = 0 [-5.21, 5.2, -5.2, 5.2]}