Given the first term and the common dimerence er an arithmetic sequence how do you find the 52nd term and the explicit formula: #a_1=-19, d=-3#?
1 Answer
May 29, 2017
Explanation:
#"in an arithmetic sequence we can find any term using"#
#• a_n= a_1+(n-1)dlarr" nth term formula"#
#rArra_(52)=-19+(51xx-3)=-172#
#color(blue)" the explicit formula "#
#"found using the nth term formula"#
#"with " a_1=-19" and " d=-3#
#rArra_n=-19-3(n-1)#
#color(white)(xxxx)=-19-3n+3#
#color(white)(xxxx)=-3n-16larrcolor(red)" explicit formula"#
#color(blue)"As a check"#
#a_(52)=(-3xx52)-16=-172rarr" True"#