Given complex number
#=1/(z+2-i)#
#=1/(2costheta+i -2i sintheta+2-i)#
#=1/(2costheta -2isintheta+2)#
#=1/(2(costheta -isintheta+1))#
#=(1+costheta+isintheta)/(2(costheta -isintheta+1)(1+costheta+isintheta))#
#=(1+costheta+isintheta)/(2(1+cos^2theta +2costheta+sin^2theta))#
#=(1+costheta+isintheta)/(2(2+2costheta))#
#=(1+costheta)/(4(1+costheta))+isintheta/(4(1+costheta))#
From above expression it is obvious that
if #(1+costheta)!=0# or #-180^@< theta < 180^@ # then the real part of the given complex number will be a constant.