Having equation #x^3+alphax^2+alpha(alpha+1)+alpha^2(alpha+1)=0;alphainRR#.How to calculate #x_1^2x_2^2+x_1^2x_3^2+x_2^2x_3^2#?
2 Answers
# x_1^2x_2^2 + x_1^2x_3^2 + x_2^2x_3^2 = alpha^2(1-alpha^2)#
Explanation:
If we have a cubic equation:
# ax^3+bx^2+cx+d = 0 #
With roots
# alpha + beta + gamma = -b/a #
# alpha beta gamma = -d/a #
# alpha beta + beta gamma + alpha gamma = c/a #
Assuming that the correct equation is:
# x^3 + alpha x^2 + alpha(alpha+1) x + alpha^2(alpha+1) = 0 #
Assuming that
# x_1^2x_2^2+x_1^2x_3^2+x_2^2x_3^2 #
Using the above properties we have:
# a = 1 #
# b = alpha #
# c = alpha(alpha+1) #
# d = alpha^2(alpha+1) #
And so the root properties are:
# x_1 + x_2 + x_3 " " = -alpha #
# x_1 x_2 x_3 " " = -alpha^2(alpha+1) #
# x_1 x_2 + x_2 x_3 + x_1 x_3 = alpha(alpha+1) #
Consider:
# (x_1x_2 + x_2x_3 + x_1x_3)^2 = x_1^2x_2^2 +x_1^2x_3^2+x_2^2x_3^2+2x_1^2x_2x_3 +2x_1x_2^2x_3 +2x_1x_2x_3^2#
# " " = x_1^2x_2^2 + x_1^2x_3^2 + x_2^2x_3^2+2x_1x_2x_3(x_1 + x_2 +x_3)#
From which it follows that:
# (alpha(alpha+1))^2 = x_1^2x_2^2 + x_1^2x_3^2 + x_2^2x_3^2 + 2(-alpha^2(alpha+1))(-alpha)#
# :. alpha^2(alpha+1)^2 = x_1^2x_2^2 + x_1^2x_3^2 + x_2^2x_3^2 + 2alpha^3(alpha+1)#
# :. x_1^2x_2^2 + x_1^2x_3^2 + x_2^2x_3^2 = alpha^2(alpha+1)^2 - 2alpha^3(alpha+1)#
# " " = alpha^2(alpha+1){(alpha+1)-2alpha}#
# " " = alpha^2(1+alpha)(1-alpha)#
# " " = alpha^2(1-alpha^2)#
Explanation:
and
so