Help please with indices?: #3^(1-x)+3^(1+x) +9^x+9^-x=8#

enter image source here

2 Answers
Mar 29, 2018

#x = 0#

Explanation:

I am assuming that the equation to be solved is

# 3^(1+x) + 3^(1-x) +9^x+9^-x=8#

Writing #3^x =u#, we can cast this in the form

#3u+3/u +u^2+1/u^2 = 8#

or

#3(u+1/u) +(u^2+2u 1/u +1/u^2) = 8+2#

or

#3(u+1/u)+ (u+1/u)^2 = 10#

So #v = u+1/u# obeys

#v^2+3v-8=0 qquad implies qquad (v+5)(v-2) = 0 #

This means that either #v = -5# or #v = 2#. If #x in RR#, then #u=3^x>0# and so #v= u+1/u>0#. For real #x#, the only possible value for #v# is 2.

Hence

#u+1/u = 2 qquad implies qquad u^2-2u+1 = 0 qquad implies qquad (u-1)^2=0#

Thus

#3^x = u = 1 = 3^0#

and hence the only real solution for #x# is

#x=0#

Mar 29, 2018

#x=0#

Explanation:

.

#3^(1-x)+3^(1+x)+9^x+9^(-x)=8#

#3(3)^(-x)+3(3)^x+(3^x)^2+(3^x)^(-2)=8#

Let #u=3^x#:

#3u^(-1)+3u+u^2+u^(-2)=8#

#3/u+3u+u^2+1/u^2=8#

#(3u+3u^3+u^4+1)/u^2=8#

#u^4+3u^3+3u+1=8u^2#

#u^4+3u^3-8u^2+3u+1=0#

Using rational roots method, we notice that #a_0=1, and a_n=1#. Therefore, possible roots are #+-1/1=+-1#.

Trying #u=1#, we get:

#1^4+3(1)^3-8(1)^2+3(1)+1=1+3-8+3+1=8-8=0#

This indicates that #u=1# is a root. We can either use long division or factoring to factor #u-1#. We will use factoring:

#u^4-u^3+4u^3-4u^2-3u^2+3u-(u^2-1)=0#

#u^3(u-1)+4u^2(u-1)-3u(u-1)-(u+1)(u-1)=0#

#(u-1)(u^3+4u^2-4u-1)=0#

We need to factor the second expression. Using rational roots method, we find that possible roots are #+-1#. Let's try #u=1#:

#1^3+4(1^2)-4(1)-1=1+4-4-1=5-5=0#

This indicates that #u=1# is a root. Again we use factoring:

#(u-1)(u^3-u^2+4u^2-4u+u^2-1)=0#

#(u-1)[(u^2(u-1)+4u(u-1)+(u+1)(u-1)]=0#

#(u-1)^2(u^2+4u+u+1)=0#

#(u-1)^2(u^2+5u+1)=0#

#(u-1)^2=0, :. u-1=0, :. u=1#

Let's substitute back for #u#:

#3^x=1#

We take natural logarithms of both sides:

#ln3^x=ln1#

#xln3=ln1#

#xln3=0#

#x=0#

#u^2+5u+1=0#

We use the quadratic formula #u=(-b+-sqrt(b^2-4ac))/(2a)#:

#u=(-5+-sqrt(25-4(1)(1)))/(2(1))=(-5+-sqrt21)/2#

#u=(-5+sqrt21)/2#

#3^x=(-5+sqrt21)/2=-0.21#

This not possible because #3^x# can not be negative.

#u=(-5-sqrt21)/2#

#3^x=(-5-sqrt21)/2=-4.79#

Again, this is not possible.

Therefore, the only valid answer is:

#x=0#