How about this one...any help around?
#int dx/(sqrt(2x^2+5)#
1 Answer
Aug 12, 2017
# int 1/(sqrt(2x^2+5)) \ dx = 1/sqrt(2) \ sinh^(-1)(sqrt(2)/sqrt(5)x) + C #
Explanation:
We have:
# I = int 1/(sqrt(2x^2+5)) \ dx #
We can simplify and standardise the quadratic in the denominator.
Let
#u=sqrt(2)/sqrt(5)x => (du)/dx = sqrt(2)/sqrt(5) #
Substituting into the integral we get:
# I = int 1/(sqrt(2(sqrt(5)/sqrt(2)u)^2+5) )\ (sqrt(5)/sqrt(2)) \ du #
# \ \ = sqrt(5)/sqrt(2) \ int 1/( sqrt(5u^2+5) ) \ du #
# \ \ = sqrt(5)/sqrt(2) \ int 1/( sqrt(5)sqrt(u^2+1) ) \ du #
# \ \ = 1/sqrt(2) \ int 1/( sqrt(u^2+1) ) \ du #
This is now a standard integral, so we have:
# I = 1/sqrt(2) \ sinh^(-1)u + C #
And, restoring the substitution, we get:
# I = 1/sqrt(2) \ sinh^(-1)(sqrt(2)/sqrt(5)x) + C #