# How can I prove b^(x+y)=b^xb^y by using b^x=e^(xln(b)) ?

Then teach the underlying concepts
Don't copy without citing sources
preview
?

#### Explanation

Explain in detail...

#### Explanation:

I want someone to double check my answer

2
Feb 9, 2018

$\setminus$

$\text{Please see proof below.}$

#### Explanation:

$\setminus$

$\text{We compute as follows, using the rule you provided,}$
$\text{to be taken as a given:}$

${b}^{x + y} \setminus = \setminus {e}^{\left(x + y\right) \ln \left(b\right)} \setminus = \setminus {e}^{\left[x \ln \left(b\right) + y \ln \left(b\right)\right]} \setminus = \setminus {e}^{x \ln \left(b\right)} \setminus \cdot {e}^{y \ln \left(b\right)}$

$\setminus q \quad \setminus q \quad \setminus = \setminus {b}^{x} \setminus \cdot {b}^{y} . \setminus q \quad \setminus q \quad \setminus q \quad \square$

• 39 minutes ago
• 40 minutes ago
• 42 minutes ago
• 45 minutes ago
• 20 minutes ago
• 21 minutes ago
• 23 minutes ago
• 29 minutes ago
• 32 minutes ago
• 36 minutes ago
• 39 minutes ago
• 40 minutes ago
• 42 minutes ago
• 45 minutes ago