How can you convert this #int dx/(ax^2+bx+c)# into the form of #1/a int dx/(t^2 +- k^2)# ?

#int dx/(ax^2+bx+c)# =#1/a int dx/(t^2 +- k^2)#
Please give a brief description.
https://byjus.com/maths/integrals-particular-function/

Number 7 point , how #c/a -(b^2/4a^2)=+-k#

1 Answer
Jul 24, 2018

Please see below.

Explanation:

Here ,

#I=int1/(ax^2+bx+c)dx#

#=>I=1/aint1/(x^2+b/ax+ c/a)dx...to(1)#

Now , #x^2+b/ax+c/a# is not a perfect square.

To complete perfect square let #M# be the third term,
such that #x^2+b/ax +M # is a perfect square.

So,

#color(blue)((i)1^(st) term=x^2#
#color(blue)((ii)2^(nd)term=b/ax#
#color(blue)((iii)3^(rd)term=M#

Formula :
#color(blue)(3^(rd)term=(2^(nd)term)^2/(4xx 1^(st) term)#

#M=(b/ax)^2/(4xxx^2)=(b^2x^2)/(4xxa^2x^2)=b^2/(4a^2)#

#i.e. x^2+b/ax+b^2/(4a^2) # is a perfect square.

So,
#x^2+b/ax +c/a=x^2+b/axcolor(red)(+b^2/(4a^2))+c/acolor(red)(-b^2/(4a^2)#

#x^2+b/ax +c/a=(x+b/(2a))^2+(c/a-b^2/(4a^2))...to(2)#

Subst. value of #(2)# into #(1)#

#I=1/aint1/((x+b/(2a))^2+(c/a-b^2/(4a^2)))dx#

Taking , #(x+b/(2a))^2=t^2 and c/a-b^2/(4a^2)=k^2#

#I=1/aint1/(t^2+k^2)dx#,

Where, #color(red)(k^2=c/a-b^2/(4a^2)=>k=+-sqrt(c/a- b^2/(4a^2))#

#i.e. sqrt(c/a-b^2/(4a^2))=+-k#

Please note that , according to your question : Number 7 point:

#c/a-b^2/(4a^2)=color(red)(k^2) and # not #color(red)( +-k#