How can you divide #\frac { 9a b ^ { - 3} } { 9^ { - 1} a ^ { - 2} b ^ { 5} }#?

1 Answer
Jul 25, 2017

See a solution process below:

Explanation:

First, rewrite the expression as:

#(9/9^-1)(a/a^-2)(b^-3/b^5)#

Next, use these rules of exponents to divide the #9# and #a# terms:

#a = a^color(red)(1)# and #x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#

#(9/9^-1)(a/a^-2)(b^-3/b^5) => (9^color(red)(1)/9^color(blue)(-1))(a^color(red)(1)/a^color(blue)(-2))(b^-3/b^5) =>#

#9^(color(red)(1)-color(blue)(-1))a^(color(red)(1)-color(blue)(-2))(b^-3/b^5) => 9^(color(red)(1)+color(blue)(1))a^(color(red)(1)+color(blue)(2))(b^-3/b^5) =>#

#9^2a^3(b^-3/b^5) => 81a^3(b^-3/b^5)#

Now, use this rule of exponents to divide the #b# terms:

#x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))#

#81a^3(b^color(red)(-3)/b^color(blue)(5)) => 81a^3(1/b^(color(blue)(5)-color(red)(-3))) => 81a^3(1/b^(color(blue)(5)+color(red)(3))) =>#

#81a^3(1/b^8) =>#

#(81a^3)/b^8#