How can you find standard deviation from a probability distribution?

1 Answer
Feb 10, 2018

"Standard deviation" = sqrt(E(X^2) - (E(X))^2) Standard deviation=E(X2)(E(X))2

Explanation:

In a PDF, f(x) f(x) , the expected mean is given by E(X) E(X)

Where E(X) = int_(-oo) ^(oo) x *f(x) dx E(X)=xf(x)dx

The variance is given by Var(x) = E(X^2) - ( E(X) )^2 Var(x)=E(X2)(E(X))2

Where E(g(X) ) = int_(-oo) ^(oo) g(x) * f(x) dx E(g(X))=g(x)f(x)dx

We know

"Standard Deviation" = sqrt( "Variance " ) Standard Deviation=Variance

=> "Standard deviation" = sqrt(E(X^2) - (E(X))^2) Standard deviation=E(X2)(E(X))2

Or...

=> "Standard deviation" =sqrt( int_(-oo) ^(oo) x^2 *f(x) dx -( int_(-oo) ^(oo) x *f(x) dx)^2 Standard deviation=x2f(x)dx(xf(x)dx)2