How do I evaluate #int(t +5) sin (t+5) dt#?

1 Answer
Jan 31, 2015

The answer is: #-(t+5)cos(t+5)+sin(t+5)+c#

This integral has to be done with the theorem of the integration by parts, that says:

#intf(t)g'(t)dt=f(t)g(t)-intg(t)f'(t)dx#

We can assume that #f(t)=t+5# and #g'(t)dt=sin(t+5)dt#.

So:

#g(t)=int(sin(t+5)dt)=-cos(t+5)#,

#f'(x)dx=1dx#.

Then:

#int(t+5)sin(t+5)dt=(t+5)(-cos(t+5))-int-cos(t+5)1dt=-(t+5)cos(t+5)+sin(t+5)+c#