How do i find the answer using the quotient rule for this question?

#f(x)=(x)/(1-x)^2#

2 Answers
Feb 11, 2018

#d/dx(u/v)=(1+x)/(1-x)^3#

Explanation:

Given:
#f(x)=(x)/((1-x)^2#

Here,
Let #u=x#
and
#v=(1-x)^2#
By quotient rule, we have
#d/dx(u/v)=(v(du)/dx-u(dv)/dx)/v^2#

Then
#(du)/dx=1#
#(dv)/dx=2(1-x)(0-1)=-2(1-x)#
Thus,
#d/dx((x)/((1-x)^2))=((1-x)^2(1)-x(-2(1-x)))/(((1-x)^2)^2#
#=((1-x)^2+2x(1-x))/(1-x)^4#
#=(1-2x+x^2+2x-2x^2)/(1-x)^4#
#=(-x^2+1)/(1-x)^4#
#(1-x^2)/(1-x)^4#
#((1-x)(1+x))/(1-x)^4#
#=(1+x)/(1-x)^3#

Thus,

#d/dx(u/v)=(1+x)/(1-x)^3#

Feb 11, 2018

#f'(x)=(1+x)/(1-x)^3#

Explanation:

#"given "f(x)=(g(x))/(h(x))" then"#

#f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larrcolor(blue)"quotient rule"#

#g(x)=xrArrg'(x)=1#

#h(x)=(1-x)^2rArrh'(x)=-2(1-x)larrcolor(blue)"chain rule"#

#rArrf'(x)=((1-x)^2+2x(1-x))/(1-x)^4#

#color(white)(rArrf'(x))=(1-2x+x^2+2x-2x^2)/(1-x)^4#

#color(white)(rArrf'(x))=(1-x^2)/(1-x)^4#

#color(white)(rArrf'(x))=((1-x)(1+x))/(1-x)^4#

#color(white)(rArrf'(x))=(1+x)/(1-x)^3#