How do I find the complex conjugate of #10+6i#?

1 Answer
Mar 23, 2018

Answer:

#10-6i#

Explanation:

#"Given a complex number "z=a+-bi" then"#

#"the "color(blue)"complex conjugate "=acolor(red)(∓)bi#

#"note that the product of a complex number and it's"#
#"conjugate results in a real number"#

#(a+bi)(acolor(red)(-)bi)=a^2+b^2larrcolor(blue)"real number"#

#"the conjugate of "10+6i" is "10color(red)(-)6i#

#"and "(10+6i)(10-6i)=100+36=136larrcolor(red)"real"#