How do I find the derivative of #f(x)=x^3# from first principles?

1 Answer
Oct 11, 2014

First Principles #-># Difference Quotient

#f'(x)=lim_(h->0)(f(x+h)-f(x))/h#

#f(x)=x^3#

#f(x+h)=(x+h)^3#

#f'(x)=lim_(h->0)((x+h)^3-x^3)/h#

#f'(x)=lim_(h->0)((x+h)(x^2+2xh+h^2)-x^3)/h#

#f'(x)=lim_(h->0)(x^3+2x^2h+xh^2+x^2h+2xh^2+h^3-x^3)/h#

#f'(x)=lim_(h->0)(2x^2h+xh^2+x^2h+2xh^2+h^3)/h#

#f'(x)=lim_(h->0)(h*(2x^2+xh+x^2+2xh+h^2))/h#

#f'(x)=lim_(h->0)2x^2+xh+x^2+2xh+h^2#

#f'(x)=lim_(h->0)3x^2+xh+2xh+h^2#

#f'(x)=3x^2+x(0)+2x(0)+(0)^2#

#f'(x)=3x^2#