How do I find the derivative of #x^2 + 7x -4# using first principles?

1 Answer
Oct 11, 2014

First Principles #-># Difference Quotient

#f'(x)=lim_(h->0)(f(x+h)-f(x))/h#

#f(x)=x^2+7x-4#

#f(x+h)=(x+h)^2+7(x+h)-4#

#f'(x)=lim_(h->0)((x+h)^2+7(x+h)-4-(x^2+7x-4))/h#

#f'(x)=lim_(h->0)((x+h)^2+7(x+h)-4-x^2-7x+4)/h#

#f'(x)=lim_(h->0)((x+h)^2+7x+7h-4-x^2-7x+4)/h#

#f'(x)=lim_(h->0)(x^2+2xh+h^2+7x+7h-4-x^2-7x+4)/h#

#f'(x)=lim_(h->0)(2xh+h^2+7h)/h#

#f'(x)=lim_(h->0)(h(2x+h+7))/h#

#f'(x)=lim_(h->0)(2x+h+7)#

#f'(x)=2x+(0)+7#

#f'(x)=2x+7#