How do I find the equation of tangent to the curve at the point corresponding the given value of the parameter. #x=e^sqrtt, y=t-lnt, t=3#?

1 Answer
Nov 18, 2017

The given parametric equation of the curve #x=e^sqrtt, y=t-lnt#

So #(dx)/(dt)=e^sqrttxx1/(2sqrtt)#

and

#(dy)/(dt)=1-1/t#

#(dy)/(dx)=(1-1/t)/(e^sqrttxx1/(2sqrtt))#

Slope of the tangent at parametric point #t=3#

#m=[(dy)/(dx)]_(t=3)=(1-1/3)/(e^sqrt3xx1/(2sqrt3))#

#=>m=4/(sqrt3e^sqrt3)#

The coordinates of the point of contact at #t=3# in Cartesian system
are #(e^sqrt3,3-ln3)#

Hence the equation of the tangent at desired point will be

#y-(3-ln3)=m(x-e^sqrt3)#

#=>y-(3-ln3)=4/(sqrt3e^sqrt3)(x-e^sqrt3)#

#=>y=(4x)/(sqrt3e^sqrt3)-4/sqrt3+(3-ln3)#