How do I find the mean of the data set #{x_1,x_2,....,x_25}# given that #sum_(i=1)^25x_i^2=2568.25# and the standard deviation is #5.2#?
1 Answer
The mean is
Explanation:
Standard deviation
#sigma^2=(sum(x_i-mu)^2)/N#
If we distribute the square, we get
#sigma^2=(sum(x_i^2-2x_imu+mu^2))/N#
#color(white)(sigma^2)=(sumx_i^2-2musumx_i+Nmu^2)/N#
#color(white)(sigma^2)=(sumx_i^2-2Nmu^2+Nmu^2)/N#
#color(white)(sigma^2)=(sumx_i^2)/N-mu^2#
This gives us an equation for
- We know
#sigma^2=5.2^2 = 27.04# .- We know
#sumx_i^2=2568.25# .- We know
#N=25.# - We want to find
#mu# .
We can now plug in all the known values to solve for the one unknown.
#sigma^2=(sumx_i^2)/N-mu^2#
Solving for
#mu^2 = (sumx_i^2)/N-sigma^2#
#color(white)(mu^2) = (2568.25)/25-5.2^2#
#color(white)(mu^2) = 102.73-27.04#
#color(white)(mu^2) = 75.69#
#=>mu=sqrt(mu^2)=sqrt(75.69)=8.7#