How do I solve #int_0^1sin(x)/(sin(x)+sin(1-x))dx#?

#int_0^1sin(x)/(sin(x)+sin(1-x))dx#
I tried to solve this by making a u-substitution, where #u=1-x#.
#u=1-x#
#x=1-u#
#int_0^1sin(1-u)/(sin(1-u)+sin(u))dx#
But now, I'm stuck again. I'm not sure what to do from here.

1 Answer
Mar 13, 2018

#I=1/2#
NOTE: #I=int_0^1sin(1-u)/(sin(1-u)+sin(u))du=int_0^1sin(1-x)/(sin(1-x)+sin(x))dx#
Then adding this with given # equ^n#,we get,#I+I=2I# and so on...

Explanation:

We note that.#color(red)((1)I=int_a^bf(x)dx=int_a^bf(t)dt=>)#,
The value of #I# is not dependent on variable #tox,t,u...#etc.
#color(red)((2)I=int_0^af(x)dx=int_0^af(a-x)dx,) # If f is continuous on#[0,a].#
#I=int_0^1(sinx)/(sinx+sin(1-x))dx.........to (A)#
Applying above theorem (2) we get,#I=int_0^1(sin(1-x))/(sin(1-x)+sin(x))dx.......to (B)#
Adding #(A) and (B)# ,i.e .#(A)+(B)=>I+I=2I#
#2I=int_0^1(sinx)/(sinx+sin(1-x))dx+int_0^1(sin(1-x))/(sin(1-x)+sin(x))dx#Denominator of both integrals are same.
#2I=int_0^1(sinx+sin(1-x))/(sinx+sin(1-x))dx=int_0^1(1)dx=[x]_0^1=1-0#
#2I=1=>I=1/2#