How do I solve the following equation step by step?

#-sin^2x=2cosx-2#

1 Answer
Apr 8, 2018

#x= 0+2pin# where #n∈Z#

Explanation:

#-sin^2x=2cosx-2#

  1. Set the equation equal to 0
    #-sin^2x-2cosx+2=0#

  2. Apply the modified Pythagorean identity: #1-cos^2theta=sin^2theta#:
    #-(1-cos^2theta)-2cosx+2=0#

  3. Simplify by distributing
    #-1+cos^2x-2cosx+2=0#

  4. Combine like terms
    #cos^2x-2cosx+1=0#

  5. Factor like a quadratic
    #(cosx-1)(cosx-1)=0#

  6. Solve
    #cosx=1#
    #x= 0+2pin# where #n∈Z#

graph{(sinx)^2+2cosx-2 [-0.92, 19.08, -5.48, 4.52]}