#f'(x)=lim_(h->0) (f(x+h)-f(x))/h#
#f(x)=sqrt(2+6x)#
#f(x+h)=sqrt(2+6(x+h))=sqrt(2+6x+6h#
Make the substitutions for #f(x)# and #f(x+h)#
#f'(x)=lim_(h->0) (sqrt(2+6x+6h)-sqrt(2+6x))/h#
Rationalize the numerator
#=lim_(h->0) (sqrt(2+6x+6h)-sqrt(2+6x))/h*(sqrt(2+6x+6h)+sqrt(2+6x))/(sqrt(2+6x+6h)+sqrt(2+6x))#
Remember the difference of perfect squares for the numerator
#=lim_(h->0) ((2+6x+6h)-(2+6x))/(h*sqrt(2+6x+6h)+sqrt(2+6x))#
Distribute the negative
#=lim_(h->0) (2+6x+6h-2-6x)/(h*sqrt(2+6x+6h)+sqrt(2+6x))#
Simplify numerator
#=lim_(h->0) (6h)/(h*sqrt(2+6x+6h)+sqrt(2+6x))#
Cancel the factors of #h#
#=lim_(h->0) (6)/(sqrt(2+6x+6h)+sqrt(2+6x))#
Substitute in the value of 0 for #h# and then simplify
#=(6)/(sqrt(2+6x+6(0))+sqrt(2+6x))#
#=(6)/(sqrt(2+6x)+sqrt(2+6x))#
#=(6)/(2sqrt(2+6x))#
#=3/sqrt(2+6x)#