How do use an algebraic method to find the exact roots of the equation #(x-2)/x+3x=-1#?

1 Answer
Dec 23, 2016

First observation is that #x!=0#

Explanation:

Now we can multiply everything by #x#:
#(cancelx(x-2))/cancelx+3x*x=-1*x#

Converting this into a standard quadratic equation:
#x-2+3x^2=-x->3x^2+2x-2=0#

Using: #x_(1,2)=(-B+-sqrt(B^2-4AC))/(2A)# we get:

#x_(1,2)=(-2+-sqrt(2^2-4*3*(-2)))/(2*3)#

#x_(1,2)=(-2+-sqrt(4+24))/6=(-2+-sqrt28)/6=(-2+-2sqrt7)/6#

#x_(1,2)=-1/3+-1/3sqrt7#