How do you add and simplify #\frac { x + 2y } { x ^ { 2} + 8x y + 16y ^ { 2} } + \frac { x - 4y } { x ^ { 2} + 6x y + 8y ^ { 2} } #?

1 Answer
May 30, 2017

#=(2(x^2+2xy-6y^2))/((x+4y)(x+4y)(x+2y))#

Explanation:

Factorise the denominators first:

#(x+2y)/((x+4y)(x+4y)) + (x-4y)/((x+4y)(x+2y))#

#=color(white)(xxxxxxxxxxxxxxxxxxxx)/((x+4y)(x+4y)(x+2y))" "larr#find the LCD

#=(color(blue)((x+2y)(x+2y))+color(red)((x-4y)(x+4y)))/((x+4y)(x+4y)(x+2y))" "larr# see below

#=(color(blue)(x^2+4xy+4y^2) + color(red)(x^2 -16y^2))/((x+4y)(x+4y)(x+2y))" "larr# simplify

#=(2x^2+4xy-12y^2)/((x+4y)(x+4y)(x+2y))#

#=(2(x^2+2xy-6y^2))/((x+4y)(x+4y)(x+2y))#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#(x+2y)/((x+4y)(x+4y)) xx (x+2y)/(x+2y) = ((x+2y)(x+2y))/((x+4y)(x+4y)(x+2y))#

#(x-4y)/((x+4y)(x+2y)) xx (x+4y)/(x+4y)= ((x+4y)(x-4y))/((x+4y)(x+4y)(x+2y))#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#(a+b)^2 = a^2 +2ab +b^2" "larr# squaring a binomial
#color(blue)((x+2y)(x+2y) = x^2 +4xy+4y^2)#

#(a+b)(a-b) = a^2 -b^2" "larr# difference of two squares
#color(red)((x+4y)(x+4y)= x^2 -16y^2)#